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Editorial

 

Keratocytes: more than a framework for the window

 

In this issue of 

 

Clinical and Experimental Ophthalmology

 

, Poole,
Brookes and Clover describe confocal microscope 3-D
imaging and volume rendering reconstruction of the kerato-
cyte network in the human corneal stroma.
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 They have used
the cell tracker dye 5-chloromethylfluorescein diacetate
(CMFDA) to show exquisite detail of the stromal network,
following up earlier work they have completed on the
porcine cornea
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 and fibroblast networks in connective tissue
explants.
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 They show previously unseen process ramifica-
tions, orientated in both lateral and anteroposterior direc-
tions. Taken in conjunction with increasing evidence for
extensive gap junction connections within the corneal
stroma,
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 the stromal keratocyte network is clearly both
very extensive and highly coupled.

Why is this important? In this avascular tissue the kerato-
cyte network will provide a means by which nutrients and
metabolites are passed into the central regions of the
stroma, and waste products out. In this sense the corneal
keratocyte has an analogous role to the astrocyte in the
central nervous system. The astrocytes are also extensively
coupled, vital for their role in maintaining the neuronal
environment.
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 These cells remove waste products (including
neurotoxins such as potassium and glutamate released
during neuronal depolarization) and pass back metabolites.
In cases of injury, however, not only do the astrocytes become
activated, but they increase their level of cell coupling.
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Raised interstitial potassium and glutamate from injured
neurones then generate spreading cytosolic calcium waves
that are thought to pass via gap junction coupled astro-
cytes.
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 These calcium waves, in conjunction with inter-
cellular astrocytic-neuronal signalling, encompass healthy
neighbouring neurones into the injured area, eventually
leading to cell death, a process also known as the ‘gap
junction mediated bystander effect’.
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 In the 24–48 h
following central nervous system trauma then, secondary
propagation from the injury site increases the volume of
damaged tissue.
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 The bystander effect is not unique to the
astrocyte: it is, for example, a significant factor following
ionizing radiation
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 and in cytomegalovirus retinitis contrib-
utes to the death of uninfected cells.
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As Poole 

 

et al.

 

 allude,

 

1

 

 the bystander effect is almost
certainly an important factor in the cornea following laser
surgery. The side-effects of photorefractive keratectomy
(PRK) include short-term pain, widespread keratocyte
apoptosis in the anterior stroma and corneal haze, and laser

 

in situ

 

 keratomileusis (LASIK) can have longer term adverse
effects on corneal biomechanics.
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 Although some have
suggested that the emerging laser epithelial keratomileusis

(LASEK) procedure may overcome some of these com-
plications, all of these corneal surgical procedures suffer
from outcome variability or reduced precision, especially in
eyes with high myopia.
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 This variability almost certainly
arises from two sources: (i) the die back (or regression)
resulting from the gap junction mediated bystander effect;
and (ii) scarring (fibrosis) arising from the inflammatory
response
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 and the extent to which fibroblast and myo-
fibroblasts move into the wound area to replace the injured
keratocytes.
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 Following corneal damage, both the kerato-
cytes and cells moving into the wound area remain coupled.
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Furthermore, in twin abstracts published in this journal last
year, Laux-Fenton, Grupcheva and colleagues have indi-
cated that down-regulation of this coupling appears to alle-
viate the inflammatory response, and hence should reduce
scarring.
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 They predict that down-regulation will also
relieve regression, as has been reported following down-
regulation of coupling between astrocytes in the central
nervous system.
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The highly coupled keratocyte network plays important
roles during development, in maintaining the cornea, and in
wound repair, but the coupling may not always be so helpful
following extensive damage. Modulation of the wound
healing process, which requires a better understanding of
the corneal stroma, is a key factor to improving surgical
outcomes. This is compounded by the existence of three
distinct keratocyte subpopulations within the stroma, which
the article by Poole 

 

et al.

 

 highlights in the human cornea.

 

1

 

The roles played by these layers, especially the denser, more
variably sized keratocyte layer in the anterior stroma, will be
critical following trauma to both the epithelium and the
stroma, and in disease processes such as pseudophakic
bullous keratopathy and keratoconus in which gap junction
coupling may also be of significance.

 

4

 

Until the last 10 years, within clinical ophthalmology,
the role and functions of the keratocyte often seems to have
only merited a cursory ‘footnote’ in comparison to the
corneal endothelium and epithelium. However, advances in
corneal and refractive surgery have highlighted the impor-
tance of understanding keratocyte function and laboratory
science continues to demonstrate that the keratocyte
network is much more dynamic than ever speculated.
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